
Hyper-graphical extensions of

randomly grown neural networks

MA4J5 Structures of Complex Systems

Ramón Nartallo-Kaluarachchi

Lecturer: Dr. Markus Kirkilionis

Warwick Mathematics Institute

University of Warwick

2021-2022

Abstract

There is a strong link between network models and computational
neuroscience, particularly machine learning and neural networks.
Originally, neural networks took direct inspiration from the human
brain in terms of both structure and function. However, it is com-
mon to see network topologies in the artificial neural networks used
in machine learning that are neither explainable nor motivated. Sim-
ilarly, in computational neuroscience and spiking neural networks,
random topologies are common. In 2015, Agazi et al presented a
simple branching process model of the growth of a neuron as well
as a notion of connectivity between these single neurons [1]. This
allows for the stochastic simulation of small networks that mimic
the structure of biologically grown neural networks. In this project,
the aim was to recreate the model and then to significantly expand
to hyper-graphical extensions and useful applications. The exten-
sions include: excitatory/inhibitory networks, clustered networks
of local and projection neurons, layered neural networks for deep
learning and Hopfield networks. With these extensions and the as-
sociated algorithms, the model can be used to generate a wide range
of biologically motivated network topologies ready for application in
computational neuroscience and machine learning.

Keywords: Random graphs, neural networks, hyper-graphs, brain
growth, graph theory, branching processes

Contents

iAbstract ii

1 Introduction v

2 A model of a single neuron vi
2.1 Algorithm for modelling a single neuron vii

3 A network level model viii
3.1 Connectivity . viii

3.1.1 Calculating the distance between axonal trees
and soma . viii

3.2 Networks of neurons ix
3.2.1 Algorithm for a network level model x

4 Excitatory-inhibitory networks xii
4.1 Neurotransmitters and Dale’s law xii
4.2 Excitation & inhibition in computational models . . . xii
4.3 Extension to an E-I network model xii

4.3.1 Algorithm for an E-I network model xiii
4.4 Bipartite graphs and the star expansion xiv

5 Clustered networks: local and projection neurons xvi
5.1 Organisation in the brain xvi
5.2 Local and projection neurons xvi
5.3 Extension to a clustered network model xvii

5.3.1 Expanding the parameter space xvii
5.3.2 Structuring a clustered network xviii
5.3.3 Connectivity of clusters xviii
5.3.4 Algorithm for a clustered network model . . . xx
5.3.5 Algorithm for a weighted cluster model xxi

6 Machine learning: layered neural networks xxiii
6.1 Neuromorphic machine learning xxiii
6.2 Extension to a layered neural network model xxiii

6.2.1 Structuring a layered neural network xxiv
6.2.2 Algorithm for a layered neural network xxv
6.2.3 Filtering unused nodes xxvii

6.3 E-I layered neural networks xxviii

7 Hopfield networks xxx
7.1 Features of a Hopfield network xxx
7.2 Extension to a Hopfield network model xxx

7.2.1 Algorithm for a Hopfield network model . . . xxxi
7.3 E-I Hopfield network xxxii

References xxxiii

Appendices xxxv

A Region bounding a cluster xxxv

1 Introduction

Within both machine learning and computational neuroscience, there
is a sub field focused on building biologically motivated artificial
neural networks that mimic the function of the human brain. How-
ever, even these networks typically neglect network topology and
structure as a important biological feature, often opting for random
or arbitrary connectivity. Random graph theory is a useful tool in
studying both the structure and dynamics of biological networks,
including those in the human brain. The neural networks found in
the human brain are, of course, the product of biological growth
processes and formation over time. An interesting approach to the
problem of producing biologically motivated and plausible connec-
tivity in networks is emulating the dynamics of biological neural
growth.

A complex, established tool for the simulation of such networks is
NETMORPH presented by Koene et al. [2]. Similarly to the model
discussed here, neurons are modelled as rooted binary trees governed
by a branching process. The branching rate in this state-of-the-art
model is assumed to be ‘a monotonically decreasing function of time’
[2]. In this project, the model used was presented by Ajazi et al.
[1]. It is a simplification of the NETMORPH model that assumes a
constant branching rate for all times. The model is also restricted
to 2D. Whilst this is sufficient for the majority of applications and
extensions discussed in this project; the model, and the extensions
presented here, could be generalised to 3D.

A key aim of this project was to take the graphical nature of the
model and extend it to hyper-graphical structures. By doing this,
one can mimic hierarchical features of the brain as well as model di-
verse types of neurons, thus creating more biologically plausible and
rich networks. The hyper-graphical extensions considered in this
project are: networks of excitatory-inhibitory neurons; networks of
local and projection neurons, organised into clusters; layered, feed-
forward networks, such as those used in deep learning; and Hopfield
networks.

This paper should be read alongside the Jupyter notebook that al-
lows for the simulations of these networks. The notebook is available
at https://github.com/rnartallo/randomlygrownnetworks. The
code is written in Python3.

2 A model of a single neuron

The model presented here was first presented by Ajazi et al. (2015)
[1]. It is a direct simplification of the model presented in Acimov́ıc
et al. (2011) [3].

A neuron is assumed to be, at any time, a rooted, random tree.
We call the root the soma of the neuron. The branches of the tree
represent the growing axons of the neuron.

We denote our time parameter by t ≥ 0. At time t = 0, the neuron
is represented by a single point s ∈ R2, the soma. At any time t, the
neuron is represented by the random tree Ns(t) ⊂ R2. The neural
growth is governed by the two processes of elongation and branching
of axons.

At t = 0, a segment begins to grown from s in a random direc-
tion between two parameters: the angle upper-bound, θU ; and the
angle lower-bound, θL. The segment grows with constant speed, set
to 1. This is not a restriction as time can be rescaled. At a random
time τ0, governed by an exponential distribution with mean 1/λ,
the segments splits into two new segments with random directions
between the bounds. These develop independently in the same man-
ner. Each of these segments will split at times τ0 + τ1 and τ0 + τ2
respectively. The τi are independently, identically distributed from
the same exponential distribution with mean 1/λ. This process re-
peats whilst t < T ; where T is a parameter representing the total
time given for growth.

The parameters for the model are:

• s - the start point of the neuron and the position of the soma.

• θU - the angle upper-bound for the direction of an axon.

• θL - the angle lower-bound for the direction of an axon.

• λ - the rate/inverse scale of the exponential distribution gov-
erning branching times.

• T - the stopping time for the model.

In the majority of cases we consider θU = −θL.

Figure 1: Figure taken from Agazi et al [1] showing an example of how the
branching process evolves.

Figure 2: Simulated neurons: with angles in [−π/6, π/6] and [−π, π]; λ = 1;
T = 6

2.1 Algorithm for modelling a single neuron

Using the model and the parameters, we can define the following
algorithm for modelling a single neuron.

• Parameters: s, θU , θL, λ, T

– Ns(0) = {s}
– Generate a random direction d ∼ U(θL, θU)

– while t < T

∗ Generate a branching time τ ∼ Exp(1/nλ) where n is
the number of growing axons

∗ Randomly select one of the growing axons (uniformly)

∗ Generate two new directions for the new segments d1, d2 ∼
U(θL, θU)

∗ t = t+ τ

As seen in the simulated neuronal trees in Figure 2, we can now
simulate the growth of individual neurons on the plane.

3 A network level model

3.1 Connectivity

In order to construct networks from this single neuron model, Ajazi
et al. define a notion of connectivity for two neurons grown on the
same plane [1].

Firstly, we define a notion of distance between the tree of a neu-
ron starting at s, Ns(t), and a point ω.

Definition .1. Let Ns(t) represent the axonal tree of a neuron start-
ing at s after time t. Let ω ∈ R2. The distance between Ns(t) and
ω is denoted by d(Ns(t), ω) where

d(Ns(t), ω) := min{||x− ω|| : x ∈ Ns(t)} (3.1)

where || · || represents the standard Euclidean distance in R2

With this notion of distance, we now introduce a new parameter, r,
called the radius. We now define our notion of directed connectivity.

Definition .2. Let Ns(t), Nω(t) represent the axonal trees of neu-
rons S,Ω starting at s, ω after time t. Let r be the radius, a given
parameter in the model. We say that neuron S is connected to
neuron Ω if d(Ns(t), ω) ≤ r.

Observation: this is a directed notion of connectivity as d(Ns(t), ω) ≤
r ̸⇒ d(Nω(t), s) ≤ r.

3.1.1 Calculating the distance between axonal trees and soma

In order to use the notion of connectivity, we must be able to cal-
culate this distance for a practical example.

A method for calculating this distance depends on how the neu-
ron is simulated. A fair assumption is to assume that once a neuron
is simulated, we have stored the edge-set of the axonal tree. This is
a set E ⊂ R2 × R2 and uniquely defines the tree.

Let Se represent the segment connecting the two endpoints for an
edge e = [(a1, b1), (a2, b2)]. Then we have that,

d(Ns(t), ω) = min{d(Se(t), ω) : e ∈ E} (3.2)

where Ns(t) is the axonal tree of a neuron starting at s, E is its edge
set and ω ∈ R2.

Thus the distance between an axonal tree and a soma is the mini-
mum distance between the soma and each of the edges of the tree. It
still remains to calculate the distance between the soma and an edge.

We follow P. Bourke’s method for finding the distance between a
point and a segment [4].

Consider a point ω = (x, y) ∈ R2 and an edge-segment Se con-
necting (a1, b1) and (a2, b2). We first calculate u,

u =
(x− a1)(a2 − a1) + (y − b1)(b2 − b1)

||Se||2
(3.3)

If u > 1 then set u = 1. If u < 0 then set u = 0. This is how the
method differs from the shortest distance from a point to an entire
line.

We can then calculate,

α = a1 + u(a2 − a1) (3.4)

β = b1 + u(b2 − b1) (3.5)

This gives us the point of intersection of the shortest line, between
ω and Se, and Se itself. Therefore the shortest distance between Se

and ω is given by,

d(Se, ω) = ||ω − (α, β)|| (3.6)

3.2 Networks of neurons

Following again from Ajazi et al., we assume the soma of the neu-
rons are distributed randomly on some rectangle [x1, x2] × [y1, y2]
forming a 2D Poisson process with intensity µ [1].

Our model has now expanded its parameter set to include, in addi-
tion to the previous parameters,

• [x1, x2], [y1, y2] - the dimensions of the rectangle in the plane
where the soma can be placed.

• r - the radius of connectivity.

• µ - the intensity of the Poisson process governing the number
of soma.

3.2.1 Algorithm for a network level model

In order to simulate a network, we first place the soma, by simu-
lating a Poisson process and then grow an axon from each of these
soma using the single neuron model. Finally we determine the con-
nectivity of these neurons and build the adjacency matrix.

In order to relate the theoretical algorithms with the Python im-
plementations, we introduce the following very specific definition.

Definition .3. A network is a pair (A,L) where A is an n× n ma-
trix, called the adjacency matrix, and L is a n-dimensional vector of
node-data points.

The adjacency matrix, A, has entries (aij) given by,

aij =

{
1 if node i is connected to node j
0 otherwise

(3.7)

A node-data point is an ordered list of information about a node.
The list has length at least 2, containing the x-position and y-
position of the soma. Any additional elements in the list represent
hyper-graphical classes that the node is a part of.

We say that the network (A,L) has order n.

With this definition, we have a full description of a network to pass
between algorithms and to generalise to hyper-graphical structures.
Clearly, the position of each node in the plane is also a feature of
these models.

We can define the following algorithm for modelling a network.

• Parameters: θU , θL, λ, T, r, µ, [x1, x2], [y1, y2]

– Area = (x2 − x1)(y2 − y1)

– Generate n, the number of soma, n ∼ Pois(Area× µ)

– for each soma

∗ Generate a random x-position, x ∼ U(x1, x2)

∗ Generate a random y-position, y ∼ U(y1, y2)

∗ Add the list [x, y] to L

∗ Grow a tree using Algorithm 1 and the given parame-
ters

– for each tree

∗ for each soma

· Calculate the distance, dji, between tree j and soma
i

· if dji ≤ r

· Set aji = 1

· else
· Set aji = 0

• Output the network (A,L) where A = (aij)

This algorithm outputs the network in a form that is then easy to
display using Python code and the NetworkX package. There are no
further hyper-graphical classes for this network and so each node-
data point contains only the planar position of the node.

Figure 3: Network level model using parameters: µ = 0.4, θU = −θL = π, T =
4, λ = 1, r = 1

4 Excitatory-inhibitory networks

4.1 Neurotransmitters and Dale’s law

Neurotransmitters are chemical messengers that send signals be-
tween neurons. If they act in the synaptic cleft between two neurons
they can either be excitatory or inhibitory [5].

Excitatory neurotransmitters promote the generation of action po-
tentials (spikes), whereas inhibitory neurotransmitters prevent them
[5].

Dale’s law is an important ‘rule of thumb’ in neuroscience. It
states that a neuron releases the same neurotransmitter from all
its synapses [6]. This is often taken to mean that a neuron is ei-
ther excitatory or inhibitory. This gives us a biologically relevant
hyper-graphical class to extend the model.

4.2 Excitation & inhibition in computational models

Excitatory-inhibitory (E-I) classifications have been implemented
into a range of computational models. Most often, E-I classifications
are implemented in spiking and/or recurrent neural networks (SNNs
& RNNs) [7]. In these models, one aims to mimic the connectivity
and functions of the brain. It is important that excitation does not
continue indefinitely in these recurrently connected networks and so
inhibitory neurons are implemented.

4.3 Extension to an E-I network model

In order to extend our model to E-I classes, we make some key as-
sumptions. Firstly, we apply Dale’s law to say that each neuron is
either excitatory or inhibitory for all times and all connections. We
make the further assumption that each neuron is classified as either
excitatory or inhibitory with some constant probability, given by a
random uniform variable. Finally for simplicity, at this stage, we
assume that the branching rate for all neurons is the same. In large
scale neural networks, it has been observed that this does not hold,
but this is investigated in the next chapter on clustered networks [8].

In order to determine the probability of a neuron being either excita-
tory or inhibitory, we must introduce another parameter. We denote
the proportion of inhibitory to excitatory neurons by γ ∈ [0, 1]. Ex-
perimental results have shown that this varies depending on brain

area. Experimental values vary between 0.07 and 0.48 [8]. A typical
value for computational models is 0.2.

Clearly, this will generate a hyper-graphical network with each node-
data point now having an additional feature (3 features total): [x, y, q],
where q is a symbol that represents the neuron type, q ∈ {Excitatory, Inhibitory}.

4.3.1 Algorithm for an E-I network model

We can define the following algorithm for modelling an E-I network.

• Parameters: θU , θL, λ, T, r, µ, [x1, x2], [y1, y2], γ

– Area = (x2 − x1)(y2 − y1)

– Generate n, the number of soma, n ∼ Pois(Area× µ)

– for each soma

∗ Generate a random x-position, x ∼ U(x1, x2)

∗ Generate a random y-position, y ∼ U(y1, y2)

∗ Generate a random variable u ∼ U(0, 1)

· if u > γ

· q = E

· else
· q = I

∗ Add the list [x, y, q] to L

∗ Grow a tree using Algorithm 1 and the given parame-
ters

– for each tree

∗ for each soma

· Calculate the distance, dji, between tree j and soma
i

· if dji ≤ r

· Set aji = 1

· else
· Set aji = 0

• Output the network (A,L) where A = (aij)

The simplest way to display this extra classification graphically, is to
colour excitatory neurons in black and inhibitory neurons in orange.

Figure 4: EI Network level model using parameters: µ = 0.4, θU = −θL =
π, T = 4, λ = 1, r = 1, γ = 0.2

4.4 Bipartite graphs and the star expansion

There is an equivalence between a bipartite graph and a hyper-graph
[9]. If you consider an E-I network, (A,L), it has one hyper-graphical
class, neuron type q, which has been represented by colour. We can
also perform the star expansion to transform our order n hyper-
graph into a bipartite graph with n+2 nodes. Our two neuron types
become nodes in our network and each original node is connected
to the node representing its neuron type. As we are dealing with a
directed network, we make the further assumption that the original
nodes connect to the class nodes and that the class nodes are not
connected to any other nodes, (i.e they have a 0 out-degree). We
can define an algorithm that performs the star expansion on an E-I
network.

• Parameters: (A,L) - an E-I network

– Add two columns and two rows of all zeroes to the A mak-
ing it a (n+ 2)× (n+ 2) matrix

– for i in 0 to n

∗ [x, y, q] = L[i]

∗ if q=Excitatory

· A[i, n] = 1

∗ else

· A[i, n+ 1] = 1

– Output A - now a bipartite graph

This concept is presented here because of its relevance to hyper-
graphs, but it is not revisited in this project. As seen in Figure

Figure 5: Left: E-I network with parameters as in Figure 4. Right: Bipartite
star graph of the same network generated algorithmically

5, these expanded graphs are less useful visually, as they do not
display positions or inter-layer connections very well. For this rea-
son, we represent hyper-graphical classes using different techniques
throughout the project.

5 Clustered networks: local and projection neu-
rons

5.1 Organisation in the brain

The human brain is organised into a hierarchical structure of brain
areas with different sizes and scales. This scale refers both to mass
and volume, but also to the scale of information processing and com-
plexity of represented thought. A large brain area is called a cortex.
An example of a cortex is the cerebral cortex which, in turn, is made
up of the visual, auditory and somatosensory cortexes [10].

Finding an optimal balance of integration and segregation, with
respect to neural connectivity, of brain areas is key to effective pro-
cessing of information [11]. We can model distinct brain areas in
a variety of different ways. One effective way is to consider each
brain area as a dense cluster of neurons somewhat separated from a
distinct cluster. As this is a growth model and therefore a bottom-
up model, we do not impose restrictions on what we define to be
a cluster, we control the model and the parameters in a motivated
way that should produce sufficient clustering and a valid model of
distinct brain regions.

5.2 Local and projection neurons

In order to effectively mimic the brain with this clustered model, we
must consider a further class of neurons. A simplification of biology,
we classify neurons as either projection neurons or local neurons.

Local neurons typically have short axons and form circuits with
nearby neurons whereas projection neurons typically have longer
axons and connect different brain areas. This is a valid simplifi-
cation, because such a classification seems to occur at all scales.
For example, local neurons are often referred to as interneurons.
Within the category of interneurons, are the sub-categories of local
interneurons and relay interneurons. Local interneurons connect to
very nearby neurons to form circuits and relay interneurons connect
different clusters. This is on a much smaller scale than the local-
projection dichotomy mentioned above. This means that whilst the
names might change depending on the scale of the brain area being
modelled, this neuronal duality occurs in some form [12].

Furthermore, the vast majority of interneurons are inhibitory and

the vast majority of projection neurons are excitatory. This is due
to their different functions in information processing [13]. For this
reason, we do not consider both classifications simultaneously. How-
ever, with simple combination of the two extended models, this
would be possible.

5.3 Extension to a clustered network model

5.3.1 Expanding the parameter space

There are many ways one could extend this model to form a clustered
network. Here, we will focus on one single method. Firstly we make
some key assumptions:

• As the neuron types have physiological differences, we assume
that they have a different growth process. This has two effects:

– The branching rate for the two neurons is different.

– The Poisson point process dictating the number and posi-
tion of soma has different intensity.

• We assume further that the radius of connectivity is the same
for all neurons.

• The angle bounds are the same for all neurons.

• The branching rate and Poisson process intensity is the same for
each cluster. This is a overly strong assumption for modelling
some brain areas, however, loosening it increases the parameter
space significantly.

By reducing the branching rate, we can cause projection neurons to
grow further in a single direction and increase the probability that
they reach another cluster. A lower branching rate, for local neu-
rons, will increase the probability that they form connections with
nearby neurons.

This means we have to remove two parameters λ, µ and introduce
four new ones:

• λP - the branching rate for a projection neuron

• λL - the branching rate for a local neuron

• µP - the intensity of the Poisson point process governing the
number of projection neurons

• µL - the intensity of the Poisson point process governing the
number of local neurons

We assume that λL > λP in order to model their biological be-
haviour. The values of µP and µL vary depending on which brain
area you aim to model.

5.3.2 Structuring a clustered network

We consider the rectangle [x1, x2]× [y1, y2]. Dividing this rectangle
in 9 equal sub-rectangles, we label 5 rectangles as the clusters, as
shown in Figure 6. We simulate two Poisson point processes in each

Figure 6: Structure of the clustered network

one of the sub-rectangles, one for each neuron type.

5.3.3 Connectivity of clusters

There is a natural definition of connectivity for clusters.

Definition .4. Cluster A is said to be connected to cluster B if ∃ n
neurons in A s.t. each is connected to a neuron in B.

In other words, a cluster is connected to another if there are at
least n connections in that direction. This is a directed notion of

Figure 7: Simulation of clustered soma with µP = 0.2, µL = 1. Projection
neurons in red and local in green.

connectivity. A valuable extension to this definition of connectivity
is to set n = 1 and make the connection weighted.

Definition .5. Cluster A is said to be connected to cluster B if ∃
a neuron in A connected to a neuron in B. The weight, w, of this
connection is the number of connections between A and B.

This defines a weighted, directed graph with the clusters as nodes.
This can be an important tool to analyse the level of connectivity
between clusters.

The clustered network (A,L) is clearly a hyper-graphical structure
with multiple classes. Each node-data point in L now has four items:

• x-position ∈ [x1, x2]

• y-position ∈ [y1, y2]

• k - neuron type ∈ {Local, Projection}

• c - cluster ∈ {1, 2, 3, 4, 5}

As mentioned earlier, the vast majority of local neurons are in-
hibitory and the vast majority of projection neurons are excitatory,
so we consider this class redundant.

In order to display the various classes, we do not need to go to

higher level structures. We can display the type of neuron with
colours: green for local and red for projection. The cluster is obvi-
ous from the position of the neuron in the network (it is displayed
in the (x, y) position of the soma). Therefore, all the hierarchical
information can be encoded into a simple, coloured, 2D network.

5.3.4 Algorithm for a clustered network model

We can define the following algorithm for modelling a clustered net-
work.

• Parameters: θU , θL, λP , λL, T, r, µP , µL, [x1, x2], [y1, y2]

– for each cluster

∗ Area = (xc
2 − xc

1)(y
c
2 − yc1)

∗ Generate nL, the number of local soma, n ∼ Pois(Area×
µL)

∗ Generate nP , the number of projection soma, n ∼
Pois(Area× µP)

∗ for each soma

· Generate a random x-position, x ∼ U(xc
1, x

c
2)

· Generate a random y-position, y ∼ U(yc1, y
c
2)

· Add the list [x, y, k, c] to L (k- neuron type, c -
cluster)

· if k=Local

· Grow a tree using Algorithm 1 and the given pa-
rameters with λ = λL

· else
· Grow a tree using Algorithm 1 and the given pa-
rameters with λ = λP

– for each tree

∗ for each soma

· Calculate the distance, dji, between tree j and soma
i

· if dji ≤ r

· Set aji = 1

· else
· Set aji = 0

• Output the network (A,L) where A = (aij)

Note: here [xc
1, x

c
2]× [yc1, y

c
2] is the region bounding cluster c. This

is easy to workout using the structural diagram, but the formulae
are given in the appendix A.

Figure 8: Clustered network model: µL = 1, µP = 0.2, [x1, x2] × [y1, y2] =
[0, 9]× [0, 9], θP = −θL = π, T = 4, λL = 1, λP = 0.5, r = 1

5.3.5 Algorithm for a weighted cluster model

As mentioned before, from this network, we can derive a directed,
weighted graph with clusters as nodes and weighted edges represent-
ing the number of connections between a cluster. Again, to help the
theory line up with the implementation, we introduce a specific def-
inition.

Definition .6. A weighted, directed, k-cluster graph is an k × k
matrix M with entries,

mij = n (5.1)

where n is the number of connections between cluster i and cluster
j for 1 ≤ i, j ≤ k.

Observation: as the graph is directed the matrix may not be sym-
metric.

We can define the following algorithm to go from a clustered network
model to a weighted, directed, cluster graph.

• Parameters: (A,L) - clustered network of order n

• for each cluster c1

– for each cluster c2

– Count the cluster connections between c1 and c2 by:

– Connections initialised as ω = 0

∗ for i in 0 to n

∗ [x, y, k, c] = L[i]

∗ if c = c1

∗ for j in 0 to n

∗ [x∗, y∗, k∗, c∗] = L[j]

∗ if A[i, j] = 1 and c∗ = c2
∗ ω = ω + 1

– mc1,c2 = ω

• Output M = (mij)

Figure 9: Weighted cluster graph of the cluster network displayed in Figure 8.

6 Machine learning: layered neural networks

6.1 Neuromorphic machine learning

At the intersection of computational neuroscience and machine learn-
ing is the field of neuromorphic machine learning (NML). Researchers
in this area aim to build biologically motivated/plausible artificial
intelligence (AI) systems, often with the end goal of whole brain
emulation and conscious AI.

One long standing limitation with machine learning neural networks,
which we will refer to as layered neural networks, is that they act
as black boxes with little to no mathematical theory explaining why
one topology/connectivity works better than another [14].

Whilst traditional machine learning disciplines may be interested
in solving the above problem, NML researchers aim to mimic the
connectivity in the brain whilst still having a network capable of
learning.

6.2 Extension to a layered neural network model

In order to extend this model to the simulation of layered neural
networks, there are some key differences that need to be factored in
to the design.

Firstly, model training algorithms in ML often use weight matri-
ces to represent the weight of a connection between two neurons.
These n×n matrices have dimensions that assume full connectivity
between layers. However, this is not a limitation as we can represent
a lack of connection with a 0 in the weight matrix.

Furthermore, there is less freedom with choice over number of neu-
rons in the input/output layer of a layered neural network. The
number of input and output neurons is often specified by the nature
of the problem and therefore cannot be modelled by some random
process. For example, the classical introductory machine learning
problem, the recognition of handwritten characters from the NMIST
data set, maps each character to a 28 × 28 pixel image [15]. This
specifies that there must be 784 input neurons. Typically, for a
classification problem like this, there is an output neuron for each
potential classification, i.e. one for each digit 0-9. This specifies 10
output neurons.

In order for this model to be useful for NML, the number of input
and output neurons should be specified as parameters to the model.
Furthermore, another feature depending on the nature of the prob-
lem, and the nature of the research, is the number of hidden layers.
This should also be specified as a parameter to the model. We do
not specify the number of neurons in each hidden layer, as an opti-
mum value is not obvious from the problem and is better simulated
from the model. This gives the model three new parameters:

• NI - the number of neurons in the input layer.

• NO - the number of neurons in the output layer.

• H - the number of layers.

We are also assuming here that the intensity of the Poisson process
that controls the number of neurons in a layer is constant for all
hidden layers.

In the layered neural network, as it is being used for learning, po-
sition in R2 is of far reduced importance. The y-position is useful
for sorting position in a layer, but x−position becomes redundant
as it gets factored into the hyper-graphical class of ‘layer’. As such,
a node data point for a layered neural network is made up of only
two classes:

• l - layer.

• p - position in layer (from the top).

This gives us the restriction 1 ≤ l ≤ H.

6.2.1 Structuring a layered neural network

In this model extension, we discard the parameter [x1, x2]× [y1, y2]
as space is of reduced importance. We now restrict the y-position of
any generated soma to be in the range [0, 8]. The x-position must
be in the range [0, 2H]. If the x-position of a soma is in the range
[2(l−1), 2l], we say that it is in the layer l. We now have the method
for simulating a layered neural network. First, we explain in high
level steps,

1. Distribute NI soma in the strip [0, 2]×[0, 8] - the input neurons.

2. Distribute NO soma in the strip [2(H − 1), 2H] × [0, 8] - the
output neurons.

Figure 10: Structure of a layered neural network with four layers.

3. For each hidden layer, generate the number of soma using the
Poisson point process with area 16 and distribute in the strip.

4. For each soma, grow a tree with narrow angle bounds and
record the connectivity of the network, only allowing con-
nection between layer l and l + 1.

5. Use the y-position of the soma to order the neurons in their
layers and discard the x-position.

6. Display the result as a directed network.

6.2.2 Algorithm for a layered neural network

We can now define the low-level algorithm for simulating a layered
neural network.

• Parameters: µ,NI , NO, H, θL, θU , T, λ, r

• for i in 0 to NI

• Generate a random (x, y) position. (x, y) ∼ (U(0, 2),U(0, 8))

• Add node data point [x, y, 1] to L

• for i in 0 to NO

Figure 11: Grown layered neural network: µ = 1, NI = 10, NO = 10, H =
3, θU = −θL = π

6 , T = 4, λ = 1, r = 1

Figure 12: Layered neural network displaying the network grown in Figure 11.

• Generate a random (x, y) position. (x, y) ∼ (U(2(H−1), 2H),U(0, 8))

• Add node data point [x, y,H] to L

• for j in 0 to H − 2

• Generate Nj+2 ∼ Pois(16µ). This is the number of soma in
layer j + 2

• Generate a random (x, y) position. (x, y) ∼ (U(2(j + 1), 2(j +
2)),U(0, 8))

• Add node data point [x, y, j + 2] to L

• for each soma

– Grow a random tree using the parameters

• for each soma i

– for each tree j

∗ Calculate dji, the distance between the tree j and the
soma i

∗ [x, y, l] = L[i]

∗ [x∗, y∗, l∗] = L[j]

∗ if dji ≤ r and l∗ + 1 = l

∗ Set aji = 1

∗ else

∗ Set aji = 0

• Let K be a H- dimensional list of lists

• for each node-data point [x, y, l] ∈ L

– Add [x, y, l] to K[l − 1]. This sorts nodes into layers.

• for each layer k in K

– Sort by y and let p be the new (discrete) position of each
soma in the layer

– for each node in the layer k

∗ Add [l, p] (the new node-data point) to L∗

• Output (A,L∗) where A = (aij)

Whilst this network has two hyper-graphical classes, both can be
represented by the position of the node; by which layer it is in and by
its position in that layer. No further hyper-graphical representation
is needed.

6.2.3 Filtering unused nodes

The model has the ability to produce some networks with connec-
tions that do not influence the outcome of learning in the network.
For example,

1. Input nodes may not connect to the subsequent layer meaning
that an input remains unused.

2. A node may have no connections and remain unused.

3. A node may have output connections but no input connections.

4. A node may have input connections but no output connections.

5. A node in the output layer may have no connections, making
that classification impossible to achieve.

Each one of these cases requires a different solution:

1. Guaranteeing connections compromises the underlying princi-
ples of the model. In this case, one can either use the network
- this is fine if NI is very high - or simulate another - this is
better if NI is low.

2. We seek to remove unused nodes which do not add to the net-
work. We do not remove input or output nodes even if they
are unused.

3. These nodes can be important in probabilistic machine learn-
ing or machine learning with stochastic activation functions as
they can still add noise. This is actually beneficial for sam-
pling networks that aim to produce independent samples of a
posterior distribution from data. If necessary, the input can be
assumed to be 0. As such, we leave them in.

4. We seek to remove these nodes which do not add to the network.

5. Again, guaranteeing connections compromises the underlying
principles of the model. If the network is being used for a
regression problem, it can still be used. If it is being used for
a classification problem, some classifications are impossible to
achieve and so another network should be simulated.

In simpler terms, to be removed, a node must be in a hidden layer
and have no outward connections.

6.3 E-I layered neural networks

In the field of NML, particularly with spiking neural networks, E-I
classes are considered in learning networks. By combing the ideas
from Chapter 4, we can simulate an E-I layered neural network.
We reintroduce the γ parameter (proportion of neurons that are
inhibitory). Whilst the classification of output neurons has no effect
on the learning algorithm, we still classify them as either inhibitory
or excitatory for consistency and biological plausibility. Each node
data point would now have three features:

• l - layer.

Figure 13: Left: A layered neural network simulated with parameters as in
Figure 12 but with T = 2. Right the same network with the unused node
removed algorithmically.

• p - position in layer.

• q - neuron type ∈ {Excitatory, Inhibitory}

The algorithm remains almost unchanged except we add one stage
where we classify each node into either excitatory or inhibitory in
the same way as chapter 4.

Figure 14: Grown E-I layered neural network: µ = 1, NI = 10, NO = 10, H =
3, θU = −θL = π

6 , T = 4, λ = 1, r = 1, γ = 0.2

7 Hopfield networks

7.1 Features of a Hopfield network

Hopfield networks are an example of a recurrent neural network.
This means that nodes can connect into themselves, either directly
or through a path. Hopfield network are also an example of a net-
work used for learning, with the particularity that they have ‘mem-
ory’. They are not organised into layers, and as such have no ‘out-
put’. The output of a Hopfield network is the entire state of the
network at a given time. For this reason they linked heavily to the
study of dynamical systems [16].

Hopfield networks are often modelled as fully connected, recurrent
networks. However, full connectivity is not a requirement as lack
of connection can be represented as 0 in the weight matrix. The
networks also have symmetric connections with symmetric weights.
The positions of nodes in space are not considered in the Hopfield
network.

7.2 Extension to a Hopfield network model

The Hopfield network is the simplest model in this project. It is
not a hyper-graphical structure and has no additional classes; even
the (x, y)-position of the soma is redundant. We can therefore nar-
row the definition of a Hopfield network significantly from the more
general network.

Definition .7. A Hopfield network, H, is a symmetric matrix, H =
H⊤, where the entries are:

hij =

{
1 if node i and node j are connected
0 otherwise

(7.1)

We do not consider the weights in this definition as we are focused
on generating a Hopfield structure rather than a learning algorithm.

We also need to modify our notion of connectivity for the Hopfield
network so that it is symmetric.

Definition .8. Let A,B be two neurons simulated with the algo-
rithm defined in section 3.2.1. We say that A,B are connected in
the Hopfield network if either A is connected to B or B is connected
to A (using the definition of connected in Definition .2).

7.2.1 Algorithm for a Hopfield network model

Using this definition of connectivity, we can define the following
algorithm for simulating a Hopfield network.

• Parameters: θU , θL, λ, T, r, µ, [x1, x2], [y1, y2]

– Area = (x2 − x1)(y2 − y1)

– Generate n, the number of soma, n ∼ Pois(Area× µ)

– for each soma

∗ Generate a random x-position, x ∼ U(x1, x2)

∗ Generate a random y-position, y ∼ U(y1, y2)

∗ Add the list [x, y] to L

∗ Grow a tree using Algorithm 1 and the given parame-
ters

– Let H be an n× n matrix with 0 entries

– for each tree

∗ for each soma

· Calculate the distance, dji, between tree j and soma
i

· if dji ≤ r

· Set hji = 1

· Set hij = 1

• Output the Hopfield network H

We display the Hopfield network as a circular graph as the (x, y)-
positions of the soma are not relevant (nor outputted).

Figure 15: Grown Hopfield network: mu = 0.4, θU = −θL = π, T = 4, λ =
1, r = 1

7.3 E-I Hopfield network

Hopfield networks are closely linked to biologically inspired learning
algorithms. As such the treatment of Hopfield network can be ex-
tended to E-I Hopfield networks. Following on from chapter 4, we
can introduce an E-I classification into our Hopfield algorithm with-
out adding much complexity. Again, this yields a hyper-graphical
structure that we represent with colours for the two classes.

Figure 16: E-I grown Hopfield network: mu = 0.4, θU = −θL = π, T = 4, λ =
1, r = 1, γ = 0.2

References

[1] F. Ajazi, G. M. Napolitano, T. Turova, and I. Zaurbek, “Struc-
ture of a randomly grown 2-d network,” Biosystems, vol. 136,
pp. 105–112, 2015. Selected papers presented at the Eleventh
International Workshop on Neural Coding, Versailles, France,
2014.

[2] T. B. V. H. P. P. F. D. R. A. R. G. J. A. V. P. J. Koene, R. A.
and A. Van Ooyen, “Netmorph: A framework for the stochastic
generation of large scale neuronal networks with realistic neuron
morphologies,” Neuroinformatics, vol. 7, p. 195– 210, 2009.

[3] M.-M. T. H. R. T. H. L. M.-L. Acimov́ıc, J., “Modeling of neu-
ronal growth in vitro: comparison of simulation tools netmorph
and cx3d,” Bioinformatics, 2011.

[4] P. Bourke, “Minimum distance between a point and a line,”
1988.

[5] Q. B. Institute, “What are neurotransmitters?,” 2018.

[6] H. Dale, “Pharmacology and nerve-endings,” 1934.

[7] X.-J. W. H. Francis Song, Guangyu R. Yang, “Training
excitatory-inhibitory recurrent neural networks for cognitive
tasks: A simple and flexible framework,” PLOS Computational
Biology, 2016.

[8] Z. E. Attila I. Gulyás, Manuel Meǵıas and T. F. Freund, “Total
number and ratio of excitatory and inhibitory synapses converg-
ing onto single interneurons of different types in the ca1 area of
the rat hippocampus,” Journal of Neuroscience, 1999.

[9] M. Kirkilionis, “Structures of complex systems,” 2021.

[10] S. Shipp, “Structure and function of the cerebral cortex,” Cur-
rent Biology, 2007.

[11] T. J. A. . C. G. Abdallah, “Determining the hierarchical ar-
chitecture of the human brain using subject-level clustering of
functional networks,” Scientific Reports, 2019.

[12] J. J. T. Kandel, Eric; Schwartz, Principles of Neural Science.
2000.

[13] T. I. Fujii H, “Interneurons: their cognitive roles-a perspective
from dynamical systems view.,” 2005.

[14] G. Self, “Randomly wired neural networks and state-of-the-art
accuracy? yes it works.,” towards data science, 2019.

[15] S. Patel, “A-z handwritten alphabets in .csv format,” 2017.

[16] J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities,” Proc Natl Acad Sci U
S A, 1982.

A Region bounding a cluster

As mentioned in chapter 5, here we give the formulae for the regions
bounding the five clusters. Consider the rectangle [x1, x2]× [y1, y2],
and let [xc

1, x
c
2]× [yc1, y

c
2] be the region bounding cluster c. First we

define

∆x =
x2 − x1

3
(A.1)

∆y =
y2 − y1

3
(A.2)

Then, following on from Figure 6, we have,

[x1
1, x

1
2]× [y11, y

1
2] = [x1, x1 +∆x]× [y2 −∆y, y2] (A.3)

[x2
1, x

2
2]× [y21, y

2
2] = [x2 −∆x, x2]× [y2 −∆y, y2] (A.4)

[x3
1, x

3
2]× [y31, y

3
2] = [x1 +∆x, x2 −∆x]× [y1 +∆y, y2 −∆y] (A.5)

[x4
1, x

4
2]× [y41, y

4
2] = [x1, x1 +∆x]× [y1, y1 +∆y] (A.6)

[x5
1, x

5
2]× [y51, y

5
2] = [x2 −∆x, x2]× [y1, y1 +∆y] (A.7)

	Abstract
	Introduction
	A model of a single neuron
	Algorithm for modelling a single neuron

	A network level model
	Connectivity
	Calculating the distance between axonal trees and soma

	Networks of neurons
	Algorithm for a network level model

	Excitatory-inhibitory networks
	Neurotransmitters and Dale's law
	Excitation & inhibition in computational models
	Extension to an E-I network model
	Algorithm for an E-I network model

	Bipartite graphs and the star expansion

	Clustered networks: local and projection neurons
	Organisation in the brain
	Local and projection neurons
	Extension to a clustered network model
	Expanding the parameter space
	Structuring a clustered network
	Connectivity of clusters
	Algorithm for a clustered network model
	Algorithm for a weighted cluster model

	Machine learning: layered neural networks
	Neuromorphic machine learning
	Extension to a layered neural network model
	Structuring a layered neural network
	Algorithm for a layered neural network
	Filtering unused nodes

	E-I layered neural networks

	Hopfield networks
	Features of a Hopfield network
	Extension to a Hopfield network model
	Algorithm for a Hopfield network model

	E-I Hopfield network

	References
	Appendices
	Region bounding a cluster

